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Abstract. The number of self-woiding walks, U". in several zeolitic frameworks has been 
calculated up to distances n higher than 20 steps. This allows us to estimte the 'connective 
constant' or effective coordination number of these svuctures as the limit of the ratio u.ln,-l 
for large n. This parameter is correlated with the density of tetnhedra in the zeolite networks, 
and is shown to be very useful for chmterizing the network connectivity. as well as quantifying 
the iduence of the framework topology on the Si, AI atom ordering in these materials. 

1. Introduction 

Zeolites are aluminosilicates with complex crystal structures, which resuIt from the three- 
dimensional arrangement of tetrahedral Si04 and A104 units sharing corners. These 
frameworks contain cavities and channels with typical dimensions in the range of 4-12 
A, offering the possibility of trapping atoms and molecules of adequate dimensions in their 
void space. This property is the origin of a large number of industrial applications of zeolites 
as catalysts or as molecular sieves [l, 21. 

The characterization of zeolitic frameworks by geometrical~and topological methods has 
been a challenge for chemists and materials scientists in the last twenty years. Nowadays, 
more than eighty zeolite structures are known, and have been well characterized by 
diffraction and spectroscopic techniques [2, 31. It is generally accepted that the network 
connectivity conditions the physical and chemical properties of these materials. In particular, 
the distribution of tetrahedral atoms (A1 and Si) over the framework depends on topological 
features of the zeolite structures [MI. A key point in the framework characterization is 
thus the search for structural or topological variables quantifying different aspects of these 
silicate networks and that could be directly related to the physico-chemical properties of the 
corresponding materials. 

Several approaches have been proposed to characterize the topology of zeolite 
frameworks. Thus, for a particular tetrahedral (T) site in a given zeolite framework, one can 
define a coordination sequence (CS) as a series of numbers { N k ) ,  with k = 1, 2, . . . , where 
Nk is the number of T sites in 'sphere' k which are connected to 'sphere' k - 1 [7, 81. This 
is a purely topological concept, and the CS for each T atom in a zeolite structure depends 
only on the topology of the framework, but not on chemical composition, lattice distortions 
and other structural factors. A concept related to the CS is the so-called coordination degree 
sequence [9 ] ,  which gives additional information on the connectivity between successive 
topological shells. A different approach to studying the topology of zeolites consists in 
classifying the different materials according to the types of structural subunit (e.g.. rings or 
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polyhedra) contained in their frameworks. An extensive review of this procedure was given 
by Smith [lo]. 

In this paper, a different way of characterizing the zeolite frameworks is introduced. It 
consists in calculating the connective constants or effective coordination numbers of these 
silicate networks, from the long-distance behaviour of the number of self-avoiding walks 
in the corresponding structures. These concepts are explained in detail in the following 
paragraphs. 

2 Method of calculation 

To give a precise definition of random walks in zeolitic frameworks, we will consider a 
simplified structure obtained by removing oxygen atoms and extraframework cations from a 
given structure (see figure 1). In this way, we consider T atoms that share a common oxygen 
atom as being linked to one another in the simplified structure; each T atom is assumed 
to be linked to four other T atoms, and the resulting structures are fourfold coordinated 
[ll]. A self-avoiding walk (SAW) in a zeolitic framework is then defined as a walk in 
the simplified structure which can never intersect itself. On a given network, the walk 
is restricted to moving to a nearest-neighbour site during each step, and the self-avoiding 
condition constrains the walk to occupy only sites which have not been previously visited in 
the same walk [12, 131. To illustrate the application of this definition to zeolitic frameworks, 
we show in figure 1 (a sketch of the zeolite-A framework) two possible six-step walks, from 
which only one (indicated by b) is a self-avoiding walk. SAWs have been used for modelling 
the large-scale properties of long flexible macromolecules in solution [12, 141, as well as 
for the study of polymers trapped in porous media, gel electrophoresis, and size exclusion 
chromatography, which deal with the transport of polymers through membranes with very 
small pores [lS]. They have been also employed in the analysis of critical phenomena in 
lattice models [13, 161. Universal constants for self-avoiding walks have been discussed in 
a review by hivman etal [17]. 

a b 
F- 1. A sketch of the zeolite-A fmmrwork (suucture: of Linde-A type) showing two 
possiblc six-step walks stoning from the sites indicated by large open circles. The sites visited 
are indicated by small open circles. The walk on the right (b) is a self-avoiding walk. but that 
on the left is not (a). Only T sites of the framework are shown. 0 atoms. located approximately 
half-way between tetrahedral atoms arc omitted for simplicity. 

The formulas goveming the asymptotic behaviour of SAWs are significantly different 
from those of free walks. If we use the term U. for the number of different SAWs starting 
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from a given lattice site, its asymptotic behaviour for large n is given by [ 17, 18, 191 

(1) 

y is a critical exponent with values -716 for three-dimensional structures, and g is the so- 
called 'connective constant' or effective coordination number of the corresponding structure 
[12, 18, 191. This (non-universal) parameter f i  can be obtained from equation (1) by taking 
the limit 

- I I Y - - L  n I * .  

The connective constant depends upon the particular topology of each structure, and has 
been determined very accurately for standard 3D lattices. In particular. for the diamond 
structure (with the same coordination as OUT simplified silicate frameworks, z = 4) ,  one has 
p = 2.8792 [IS]. In general, for a structure with coordination number z ,  one has < z - 1 
[ W .  

3. Results and discussion 

We have calculated the numbers U. of SAWs for eight zeolitic frameworks by counting 
the possible walks up to n = 21 in large supercells including about 15 000 T sites. The u , ~  
so obtained are presented in table 1 for several values of n. In connection with this, we 
note that for the so-called Bethe lattice (or Cayley tree) [ l  1, 201, which does not contain 
any loop, the number of SAWs is given exactly by u , " ~  = z(z - l)n-l. This means that 
for z = 4 one has u f L  = 324, and the lower values of U. for the zeolite frameworks are 
due to the presence of structural rings with five or fewer T sites. Since the frameworks 
considered in this work include only rings with even numbers of T sites, US depends only 
on the number of four-membered rings in each structure. In fact, this is the result shown 
in table 1, as for increasing number of tetramer rings per T site, the number 115 decreases 
consequently. For longer SAWs (larger n). loops with higher numbers of sites contribute to 
reducing the number U,, with respect to that of the Bethe lattice. Values of the connective 
constants /L obtained by using equation (2) are also given in table 1. We estimate for the 
p-values presented here an error bar of f0.002, due basically to the extrapolation n + 00. 

For the Bethe lattice with i = 4, one has p = 3. 

Table 1. The number U, of SAWs of different lengths n for several zeolitic frameworks, 
along with the corresponding connective constants w. For offretite and phillipsire. which 
contain topologically non-equivalent tetmhedrd sires, average numben are given. Values for 
the diamond structure m also shown for comparison. 

Zeolite 

Faujasitr 
Linde A 
Offretite 
Chabarite 
Phillipsite 
Cancrinite 
Sodalite 
Analcime 
Diamond 

n = 5  

294 
294 
297 ~ . 
294 
294 
3 04 
304 
304 
324 

- n = l O  

52 100 
5 I 004 
54811 
52956 
54 350 
59 I94 
60720 
61 728 
70 188 

" = I 5  

8 840 176 
8 655 262 
9669 160 
9 269 214 
9 772 744 

I I 096 960 
1 I 703 776 
12 01 I 624 
14 774652 

n = 20 

1462364 178 
1 440 218448 
1673 878658 
1593555470 
I723 800790 
2042 690698 
2213 358 896 
2317661 564 
3 051 900 516 

I* 

2.749 
2.759 
2.779 
2.780 
2.789 
2.815 
2.829 
2.839 
2.879 

- 
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A parameter of zeolite structures interesting for comparison with the topological 
variables is the framework density (FD). defined as the number of tetrahedral atoms 
per unit volume This structural parameter has been used by several authors in 
different studies of tectosilicates, and zeolites in particular [3, 11, 211. However, the 
FD for compounds with the same network but differing chemical composition can change 
appreciably [Ill.  Thus, to assign more precisely a FD for each tectosilicate structure it is 
convenient to define a normalized framework density (FD*), which reduces the effect of 
lattice dilation or contraction due to chemical composition. With this purpose, Stixrude and 
Bukowinski [ll] defined FD' as the framework density scaled to a standard T-T distance, 
which they chose to be LS = 3.1 A. For a given tectosilicate structure one has 

FD* = F D ( L / L s ) ~  (3) 
where L is the average T-T distance of the material under consideration. In figure 2 
we present the parameter p of the zeolite frameworks studied here versus the normalized 
framework density. It is clear that there exists a correlation between the two quantities 
(correlation coefficient, p = 0.975). reflecting the natural fact that the connective constant 
goes up as the density of tetrahedral sites increases. 

Framework density (nm-3 ) 
F i y r e  2. The connective constant ( x )  vrnm the normalized framework dcnsity (FD') for 
several zeolite frameworks. The dashed line is a least-squxes fit to guide the eye. 

Connective constants are especially suitable for quantifying the influence of the 
framework topology on the tetrahedral atom ordering in aluminosilicate materials. As 
an example, we have studied the correlation between the parameter p and the transition 
temperature for a lattice-gas model in the zeolite networks IS, 221. In this simple model, 
we associate with each site i the variable ui, which equals 1 or 0 according to whether the 
site is occupied by an AI or a Si atom, and the energy of an atom configuration is given by 

V ' E ~ U i U j  (4) 
i. j 
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where the sum is extended to nearest T neighbours, and E represents an effective repulsive 
interaction between aluminium atoms in nearest T sites (6  z 0). This model is based on the 
experimental evidence for the avoidance of A1 atoms in adjacent tetrahedra (Loewenstein’s 
rule) [23, 7.41. The Si, AI atom distribution has been simulated with this model by a Monte 
Carlo.procedure for the eight zeolite structures considered here. The atomic fractions of 
A1 and Si were taken to be equal (xs,/xAl = 1). More detailed descriptions of this kind 
of Monte Carlo simulation can be found elsewhere [5,. 121 and will not be repeated here. 
It is well known that such a iattice-gas model presents a temperature-driven second-order 
phase transition from a low-temperature long-range-order pattern (AI and Si atoms alternate 
in the framework) to a high-temperature atom distribution with only short-range order [20, 
221. Moreover, it has been previously shown that the calculated critical temperature for 
this transition in aluminosilicates depends on the network topology, and in particular on the 
number Nz of next-nearest tetrahedra in the framework [5]. 

0.67 I 

2 
5 0.66 g 
z 
8 0.65 
3 a 
0 
.3 c) .i 

8 0.64 

z 
0 

$ 0.63 
e! 

0.62 
12 2.76 2.80 2.84 

Connective constant 
Figure 3. The dependence of thr critical temperature for a lattice-gas model upon rhe connective 
constant of the frmework. The reduced temperature r is defined as r = kaT/c ( k ~ :  the 
Baltzmonn constant). The dashed line is given by i = o w f h ,  with U = 0.399 and h = -0.469. 
The esumated emr in the reduced critical temperatures is i0.002. 

The dependence of the critical temperature (T,.) on the connective constant p of 
the zeolite networks is shown in figure 3.  We find a linear dependence for the eight 
tectosilicate structures considered here (p  = 0.996). For increasing connective constant, 
the critical temperature goes up, indicating that higher f i  favours the long-range order in 
the atom distribution. This is consistent with the intuitive fact that increasing the effective 
coordination number favours the propagation of atom ordering through the network. As 
one could expect. the correlation between T, and f i  shown in figure 3 is much better than 
that found between T, and N2 [5], since p takes into account the whole topology of the 
framework and not only the local connectivity~up to next-nearest tetrahedra. The correlation 
between T, and other framework-dependent parameters described in the literature is also 
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poorer than that obtained for /I. Thus, for the framework density ED' we find p = 0.968, 
and for the so-called topological density [3, 211, p = 0.913. 

Similar correlations are expected to be found between the connective constant and other 
i m e w o r k  properties, such as the site percolation threshold, a parameter related to the 
maximum concentration of substitutional species that can be present in these tetrahedral 
networks [4, 251. The calculation of the number of self-avoiding walks and connective 
constants presented here for zeolites can be directly generalized to other tectosilicates with 
non-zeolitic frameworks. Also, the actual values of the parameters found for the line 
rc = ap + b presented in figure 3 (a = 0.399, b = -0.469) require further investigation. 
Another interesting point to be investigated in the near future is the dependence of the 
so-called radius of gyration of the walks [17] on the aluminosilicate framework, as well as 
the calculation of universal quantities related to it. 
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